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Abstract
In this paper we study the generation of photon pairs through the process of spontaneous four
wave mixing (SFWM) in a χ (3) cavity. Our key interest is the generation of photon pairs in a
guided-wave configuration—fiber or waveguide—where at least one of the photons in a given
pair is matched in frequency and bandwidth to a particular atomic transition, as required for
the implementation of photon–atom interfaces. We present expressions, along with plots, for
the two-photon joint intensity both in the spectral and temporal domains. We also present
expressions for the absolute brightness, along with numerical simulations, and show that the
presence of the cavity can result in a flux enhancement relative to an equivalent source without
a cavity.

(Some figures may appear in colour only in the online journal)

1. Introduction

Photon pair generation can be accomplished through
spontaneous parametric processes including spontaneous
parametric downconversion (SPDC), based on a second-order
nonlinearity, and spontaneous four wave mixing (SFWM),
based on a third-order nonlinearity. Both of these processes
are extremely versatile in terms of the resulting properties
which emitted photon pairs can have. Thus, SFWM has been
used, or proposed, as the basis for the generation of factorable
photon pairs [1–6], of photon pairs with arbitrary spectral
correlation properties [7–9], of polarization-entangled photon
pairs [10–12], and of ultrabroadband photon pairs [13]. In
addition, if implemented in a fiber, SFWM has a number
of important advantages including the possibility of very
long interaction lengths and straightforward integration with
existing fiber optic networks. Recently, in the context of
classical optics there have been important experimental
demonstrations of four wave mixing (FWM) [14] and
the implementation of nonlinear optical devices, such as
wavelength converters and multi-wavelength fiber lasers,
which are based on FWM [15–19]. While the use of a
guided-wave configuration constrains the transverse spatial

properties of emitted photon pairs, the spectral properties
can vary widely. In common with SPDC, in the process of
SFWM the energy splitting ratio in a given photon pair is
governed only by phasematching, so that while the emission
bandwidth can vary greatly in accordance with the properties
of the nonlinear material and the pump, this bandwidth
cannot typically be made naturally very small. In this paper
we explore the use of χ (3) cavities for the generation of
SFWM photon pairs which are sufficiently narrowband for the
effective implementation of atom–photon interfaces, i.e. so
that one photon from a SFWM photon pair may be reliably
absorbed by a single atom. This is an important line of
research which represents a route for the implementation of
quantum memories [20, 21].

This paper extends to the process of SFWM a previous
analysis from our group (see [22]) of cavity-enhanced
SPDC [23–34]. In our earlier paper we analyzed the spectral
and temporal properties of SPDC photon pairs produced in
a nonlinear cavity. We showed that the use of a high-finesse
cavity results in photon pair emission constrained to the
narrow spectral windows defined by the cavity modes. In
addition we studied how the spectral mode structure imposed
by the cavity translates into a specific mode structure in
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Figure 1. Two ways in which a SFWM cavity source could be
implemented. In (a) two Bragg mirrors are written on a fiber, thus
forming a cavity. In (b) a ring cavity (fiber- or waveguide-based) is
used.

the temporal domain, and we showed that for a sufficiently
narrowband pump, the presence of a cavity leads to a
flux enhancement relative to an equivalent source without
a cavity. In the present paper, we have carried out a
corresponding analysis for SFWM. Because resonance at
the emission frequencies only (i.e. excluding the pump)
yields both narrowband emission modes and a cavity-induced
flux enhancement, in this paper we concentrate on this
case which is technologically simpler to implement. In
addition, in this paper we separately analyze the cases of
resonance to one or both of the emission modes. We discuss
the presence of high-dimensional temporal entanglement
in SFWM photon pairs emitted in a χ (3) cavity, and we
present an analytic expression, in closed form, for the joint
temporal intensity valid under certain approximations. We
present expressions for the absolute brightness along with
corresponding numerical simulations, as well as a simple
geometrical model which leads to an improved understanding
of the cavity-induced flux enhancement.

A χ (3) SFWM cavity source can be implemented with
an optical fiber on which two Bragg gratings are recorded to
form a cavity (see figure 1(a)). Likewise, the cavity can be in
the form of a fiber ring [15–17], which could be implemented
through a length of fiber connected to one input port and one
output port of a fiber-based beam splitter and two lengths of
fiber, to form the input and output of the device, connected
to the remaining two ports (see figure 1(b)). Alternatively,
recent work has shown the feasibility of observing optical
nonlinear effects in waveguide micro-rings, where light is
coupled and out-coupled from the cavity through a straight
waveguide placed tangentially to the ring [35]. This latter
route represents a highly promising approach, which could be
used for generating SFWM photon pairs and which could be
incorporated into integrated optics circuits. This paper aims
to present the required theory for the description of various
aspects of SFWM cavity sources.

2. The SFWM two-photon quantum state

In this paper we are interested in studying the spectral
and temporal properties of photon pairs generated by

spontaneous four wave mixing (SFWM) in a fiber-based (or
waveguide-based) optical cavity. Let us begin by reviewing
the SFWM two-photon state produced by a fiber, in the
absence of a cavity, assuming that each of the participating
modes propagates in a single transverse mode. The state
which describes the signal (s) and idler (i) state produced by
SFWM is given by |9〉 = |0〉s|0〉i + ζ |92〉, in terms of the
vacuum |0〉s|0〉i and the two-photon state |92〉, where ζ is a
constant related to the conversion efficiency. We have shown
previously that |92〉 is given by [6, 36]

|92〉 =
∑

ks

∑
ki

G(ks, ki)â
†(ks)â

†(ki)|0〉s|0〉i, (1)

where â(kµ) (with µ = s, i) represents the annihilation
operators for each of the signal and idler modes, labeled
by the wavenumber kµ. Expressed in terms of frequencies,
the function G(ωs, ωi) is the joint spectral amplitude (JSA)
given by G(ωs, ωi) = `(ωs)`(ωi)F(ωs, ωi) in terms of `(ω) =√

h̄ω/[πεon2(ω)] and in terms of the function

F(ωs, ωi) =

∫
dω α(ω)α(ωs + ωi − ω)

× sinc
[

L1k(ωs, ωi, ω)

2

]
ei

L1k(ωs,ωi,ω)
2 . (2)

In equation (2), L is the fiber length, α(ω) represents
the pump spectral envelope function and 1k(ωs, ωi, ω) is the
phase mismatch

1k(ωs, ωi, ω) = k(ω)+ k(ωs + ωi − ω)− k(ωs)

− k(ωi)− 2γP, (3)

where γ and P are the nonlinear coefficient (related to
self-phase and cross-phase modulation effects) and the peak
pump power, respectively.

Assuming that the pump has a Gaussian spectral profile,
with bandwidth σ , the coefficient ζ in equation (1) is given by

ζ = i
2(2π)1/2ε0cn(ωo)

h̄ωo

γfwmLP

σ
δk, (4)

where ε0 is the permittivity of free space, c is the speed of
light, ωo is the central frequency for the pump, and n(ω)
is the refractive index of the fiber. The term γfwm is the
nonlinear coefficient associated with the SFWM interaction,
and δk is the mode spacing obtained in the quantization of the
electromagnetic field.

2.1. Spectral-domain description of a SFWM cavity source

Let us now turn to the case where the SFWM fiber is in
the form of a cavity. This could be done in one of two
ways: (i) two Bragg mirrors with a separation L could be
written on a length of fiber thus forming a cavity, or (ii) a
fiber or waveguide ring cavity, of circulation length Lc could
be used, coupled to a straight fiber or waveguide placed
tangentially to the ring. In this paper we will study cases
where the cavity used is resonant to one or both of the
SFWM modes, while it is not resonant to the pump frequency.
Figure 1 shows, schematically, both of these types of fiber
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cavity sources. While we are interested in both the pulsed and
continuous-wave pump regimes, we will carry out our analysis
for the pulsed case and will obtain the continuous-wave case
as an appropriate limit.

For simplicity, in this paper we restrict our attention to
the SFWM process with degenerate pumps, i.e. for which
both pump photons in a given event come from the same
pump mode. In our analysis below, we will assume a cavity
formed by two mirrors, although we will indicate how our
results would apply to the case of a ring cavity. Because
in our calculation the cavity is not resonant to the pump,
as mentioned above, both mirrors are perfectly transmissive
for the pump. We will refer to a fiber cavity SFWM source
resonant only to the signal-photon as the Cs cavity, to a source
resonant only to the idler-photon as a Ci cavity, and to a
source resonant to both SFWM photons as a Csi cavity. We
also assume that the left-hand cavity mirror (through which
the pump enters, to be referred to as mirror 1) is perfectly
reflective for SFWM photons, so that all emitted photons
are forward-propagating, transmitted by the right-hand cavity
mirror (to be referred to as mirror 2). The calculation below
closely follows that for SPDC reported by us in an earlier
paper, see [22].

For the Csi cavity it can be shown that the two-photon
component of the state at the cavity output becomes

|9si
2 〉 = ζ

∑
ks

∑
ki

Gsi(ks, ki)a
†
s (ks)a

†
i (ki)|0〉s|0〉i, (5)

where we have defined the joint amplitude function

Gsi(ωs, ωi) = G[ks(ωs), ki(ωi)]As(ωs)Ai(ωi), (6)

given in terms of G(ks, ki) (see equation (2)), but expressed
here in terms of frequencies, and where the function Aµ(ω)
describes the effect of the cavity and can be written as

Aµ(ωµ) =
t2µ

1− |r2µ|ei(2βµ+δ1µ+δ2µ)
. (7)

In equation (7), t2µ and r2µ = |r2µ|eiδ2µ are the amplitude
transmissivity and the amplitude reflectivity of the right-hand
cavity mirror, respectively, while r1µ = eiδ1µ is the amplitude
reflectivity of the left-hand cavity mirror, for µ = s, i. In
equation (7), βµ = k(ωµ)L represents the phase acquired by
photon µ in one round trip of the fiber cavity.

The cavity-modified JSA function is shown in equa-
tion (6). The corresponding cavity-modified joint spectral
intensity (JSI) Ssi(ωs, ωi) = |Gsi(ωs, ωi)|

2 is given by [22]

Ssi(ωs, ωi) = |F(ωs, ωi)|
2As(ωs)Ai(ωi), (8)

with F(ωs, ωi) given by equation (2), and

Aµ(ωµ) =
|t2µ|2(

1− |r2µ|
)2 1

1+Fµsin2
[1µ(ωµ)/2]

, (9)

written in terms of the coefficient of finesse Fµ

Fµ =
4|r2µ|(

1− |r2µ|
)2 , (10)

and the phase factor

1µ(ωµ) = 2β + δ1µ + δ2µ. (11)

Note that in the case of a ring cavity mirror 1 does not
exist, while mirror 2 becomes a fiber-based beam splitter as
shown in figure 1(b). The coefficient r2 is then the amplitude
associated with an intra-cavity photon remaining in the cavity
in a given iteration, while the coefficient t2 is the amplitude
associated with an intra-cavity photon exiting the cavity in a
given iteration. Because mirror 1 does not exist, δ1µ should be
replaced with 0. Also, the fiber length L should be replaced
with Lr/2, where Lr is the circulation length in the ring cavity.

The Airy function Aµ(ωµ) is formed by a sequence of
equal height peaks, with width δωµ, and spectral separation,
or free spectral range, 1ωµ. Under the assumption that the
index of refraction remains constant among different peaks, it
can shown that [22]

1ωµ =
πc

Lnµ
, (12)

and

δωµ =
2c

Lnµ
√

Fµ

=
21ω

π
√

Fµ

, (13)

where nµ = n(ωµ0) is the refractive index of the fiber
evaluated at the central frequency of the signal and idler
modes (µ = s, i). Note that the cavity is resonant at
frequencies at which the peaks of the Airy function appear.
Thus, in order to ensure resonance at a particular frequency ω,
the condition sin[1µ(ω)/2] = 0 must be fulfilled. Also note
that resonance at a given desired frequency can be achieved
by adjusting the reflection phases δ1µ and δ2µ.

For the case of a cavity resonant at only one of the SFWM
modes, say the signal mode, the two-photon state and the JSI
are given by equations (5) and (8), respectively, with |r2i| = 0.
Thus, Fi = 0 and Ai(ωi) = 1, and consequently the JSI for
the Cs cavity becomes

Ss(ωs, ωi) = |F(ωs, ωi)|
2As(ωs). (14)

Likewise, for a Ci cavity the JSI becomes

Si(ωs, ωi) = |F(ωs, ωi)|
2Ai(ωi). (15)

The spectral structure of a SFWM two-photon state
obtained with a Csi cavity is illustrated in figures 2(a)–(c), for
which we have assumed a photonic crystal fiber (PCF) with
0.68 µm core radius and 0.5 air-filling fraction, and we have
relied on the step-index model [37]. These parameters have
been chosen to achieve phasematching for a SFWM process
with degenerate pumps centered at ωp = 2πc/1.064 µm and
signal and idler modes centered at ωo

s = 2πc/0.852 µm and
ωo

i = 2πc/1.417 µm, respectively. The SFWM frequencies
are chosen to be considerably frequency non-degenerate,
which facilitates photon pair splitting. We have assumed a
fiber length of L = 1 cm and a pump bandwidth of σ =
80 GHz. Figure 2(a) represents the JSI without a cavity,
i.e. so that As(ω) = Ai(ω) = 1. The two-dimensional Airy
pattern describing the effect of the cavity is shown in
figure 2(b), while figure 2(c) represents the resulting JSI
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Figure 2. In this figure we show the joint spectral intensity for SFWM photon pairs produced in a χ (3) cavity. In the first three panels we
present, for a Csi cavity, plots prepared for a particular set of parameters (see main text), as a function of the signal and idler frequencies, of
(a) the joint spectral intensity in the absence of a cavity, (b) the contribution of the cavity, comprising a matrix of cavity-allowed modes, and
(c) the resulting cavity-modified joint spectral intensity. Panels (d)–(f) are similar to panels (a)–(c), except that resonance at the idler mode
has been suppressed (i.e. this corresponds to the Cs cavity).

for the cavity-modified SFWM photon pairs. For illustrative
purposes we have assumed here r2 = 0.8, corresponding to
F = 80, in a realistic implementation the finesse would
probably be chosen much higher to ensure the emission of
sufficiently narrowband photon pairs. Note that for these plots
(figures 2(a)–(c)), we have assumed that the signal and idler
photons are filtered using rectangular filters of width σfµ =

51ωµ (with µ = s, i), centered at ωo
s and ωo

i , respectively.
As can be noted, the effect of the cavity is that the

emission frequencies are re-distributed, with respect to the
corresponding emission frequencies in the absence of a cavity,
so that emission occurs only for frequencies within the
cavity modes. Because the mode width δω scales as F−1/2,
cavity-enhanced SFWM with a sufficiently high finesse can be
an effective route towards narrowband photon pairs, to be used
for example in the context of atom–photon interfaces. As will
be studied further in a later section, if the pump bandwidth
is of the order of the cavity mode width δω, a significant
enhancement of the source brightness can result with respect
to an equivalent source without a cavity.

In figures 2(d)–(f) we illustrate the spectral structure of
SFWM photon pairs produced by a Cs cavity. Here we assume
an identical source configuration to that assumed for the Csi
cavity, except that the resonance for the idler photon has been
suppressed. figure 2(d) represents the JSI without a cavity,
i.e. so that As(ω) = Ai(ω) = 1. The one-dimensional Airy
pattern describing the effect of a cavity resonant for the single
mode only is shown in figure 2(e), while figure 2(f) represents
the resulting JSI for the cavity-modified SFWM photon pairs.
As for the Csi cavity, we have assumed that the signal and
idler photons are filtered using rectangular filters with width
σfµ = 51ωµ, centered at ωo

s and ωo
i , respectively.

As may be appreciated, the effect of the cavity is a
spectral re-distribution for the resonant, in this case signal,
photon. The result is that the JSI is now formed by elongated
modes of width δω for the signal photon and a larger width
determined by the cavity length and pump bandwidth for the
idler photon.

2.2. Temporal-domain description of a SFWM cavity source

It is instructive to study the two-photon state in the temporal
domain, in addition to the spectral domain used in our
description so far. To this end, we define the joint temporal
amplitude (JTA) f̃ (ts, ti) as the two-dimensional Fourier
transform of the JSA, i.e.

f̃ (ts, ti) = F{Gsi(ωs, ωi)}, (16)

where F denotes the Fourier transform and Gsi(ωs, ωi) is
given according equation (6).

The joint temporal intensity (JTI) can now be written as
St(ts, ti) = |f̃ (ts, ti)|2, which when properly normalized yields
the time of emission joint probability distribution.

The spectral cavity mode structure translates into a
specific temporal-mode structure. In figure 3, we have
shown for the same source parameters as in figure 2 the
resulting JTI calculated numerically through equation (16).
In physical terms, the two photons in a given pair may
exit the cavity together, or may be delayed with respect
to each other by a whole number of cavity round trip
times. The vertical (horizontal) dotted lines indicate possible
signal-mode (idler-mode) emission times, corresponding to a
whole number of cavity round trip times. This results in a
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Figure 3. (a) Here we show for the same parameters as in figure 2
the joint temporal intensity for the Csi cavity, plotted as a function
of the signal and idler times of emission. The vertical (horizontal)
dotted lines indicate possible signal-mode (idler-mode) times of
emission, each corresponding to an integer number of cavity round
trips. (b) This panel is similar to panel (a), except that it has been
prepared for the Cs cavity.

matrix of temporal emission modes, as is apparent in figure 3,
which decay in amplitude for increasing times of emission
(which imply an increasing number of cavity round trips). Of
course, for a higher finesse, this amplitude roll-off is slower,
resulting in the appearance of a larger number of temporal
modes.

Let us label each of the emission modes according to the
cavity iteration at which each of the two photons is emitted, so
that the state |ij〉, with a corresponding probability amplitude
Cij, means the signal photon emitted in the ith cavity iteration
and the idler photon emitted in the jth cavity iteration. We may
then write down the resulting two-photon state as follows:

|9〉 = [C00|00〉] + [C10|10〉 + C01|01〉] + [C20|20〉

+ C11|11〉 + C02|02〉] + [C30|30〉 + C21|21〉

+ C12|12〉 + C03|03〉] + · · · . (17)

Here, each group of terms in square brackets indicates
a certain fixed number of total cavity iterations. Thus, the
only term in the first square bracket corresponds to both
photons emitted together without any intra-cavity reflections.
The two terms in the second square bracket correspond to a
total number of one cavity iterations between the two photons.
The three terms in the third square-bracket correspond to a
total number of two cavity iterations between the two photons,
and so on for higher-order terms. It can be appreciated from
figure 3(a) that all modes within a given square-bracket group
involve the same amplitude.

Note that the state in equation (17) exhibits quantum
entanglement in the temporal-mode degree of freedom. Note
also that the state of each photon is described by a Hilbert
space with a dimension of the order of the number of effective
cavity round trip times before the state is extinguished. Thus,
for a higher coefficient of finesse, there will be more cavity
round trip times, and the dimension of the Hilbert space
which describes each photon will increase. The triangular
shape of the overall pattern of modes (see figure 3(a)) implies
that the state is non-factorable. Thus, interestingly, this
physical system leads to higher-dimensional entanglement in
the temporal-mode degree of freedom with a dimension which
can be tailored by adjusting the cavity finesse.

We can carry out a similar analysis for the Cs cavity.
The resulting JTI is plotted in figure 3(b). The fact that only
one photon is now resonant, implies that the temporal-mode
structure now appears only for the signal photon. Note that
this state may now be written as |9〉 = C00|00〉 + C01|01〉 +
C02|02〉+· · ·, which is factorable; hence, this system does not
lead to entanglement in the temporal-mode degree of freedom.

In order to gain further physical insight into the nature
of the two-photon state in the temporal domain, in figure 4(a)
we plot the JTI for the same Csi cavity source, this time as
a function of the time-sum ts + ti and time-difference ts − ti
variables. Figure 4(b) is similar to the previous plot, except
that the state has been spectrally filtered so that only the
central spectral mode in the JSI is retained. It may be seen
from these plots that the triangular pattern which appears in
the latter JTI may be thought of as an “envelope” for the
JTI corresponding to the full, i.e. spectrally unfiltered, state.
It is interesting to consider the time of arrival difference
distribution, which can be obtained from integrating the JTI
in panels (a) and (b) over the time-sum variable. The result is
plotted in figure 4(e), where the curve composed of multiple
peaks corresponds to the spectrally unfiltered state and the
other curve, which again may be thought of as an envelope,
corresponds to the central peak of the JSI. The multiple peaks
visible in the unfiltered time of arrival difference distribution
are labeled as 0,±1,±2, . . . so that a value j > 0 means that
the signal photon is emitted j cavity iterations after the idler
photon, whereas a value j < 0 means that the signal photon is
emitted j cavity iterations before the idler photon. The spacing
between peaks corresponds to the cavity round trip time.

Figures 4(c), (d) and (f) are similar to panels (a)–(b) and
(e), except that they correspond to the Cs cavity source (where
the two sources are otherwise identical to each other). Note
that in this case the time of arrival difference distribution
is asymmetric, where positive values do not occur, i.e. the
signal photon in a given pair is always are emitted after the
corresponding idler photon.

2.3. Analytical expression in closed form for the joint
temporal intensity

As was shown in section 2.2, we can obtain the JTI by
numerical evaluation of equation (16). However, in this
section we show that it is possible to obtain an expression
in closed analytic form under certain approximations.
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Figure 4. For the same parameters as in figures 2 and 3, panel (a) shows the joint temporal intensity for the Csi cavity plotted as a function
of the time-sum ts + ti and time-difference ts − ti variables. Panel (b) is similar to (a) except that we have assumed that the signal and idler
photons are filtered in such a way that a single spectral cavity mode is retained. (e) Represents the time-difference marginal joint temporal
intensity, obtained from integrating the joint temporal intensity over the time-sum variable. Note that while the red curve (with distinct
peaks) corresponds to panel (a), the blue curve corresponds to panel (b). Panels (c), (d) and (f) are similar to panels (a), (b) and (e), except
that the idler-mode resonance has been suppressed (i.e. this corresponds to a Cs cavity).

These approximations include: (i) describing each cavity
mode through a Gaussian function of the signal and idler
frequencies, (ii) assuming that the SFWM mode widths are
equal, i.e. δωs = δωi ≡ δω, and that the mode spacings are
likewise equal, i.e.1ωs =1ωi ≡1ω , and (iii) assuming that
the JSA can be described only in terms of the pump bandwidth
and the cavity mode structure, so that the sinc function in
equation (2) can be replaced by unity. Also, let us assume that
each of the signal and idler modes is filtered with rectangular
spectral filters of width M1ω, centered around the particular
cavity mode of interest. Thus, we can write the JSA in the

form

ϒ(νs, νi) = e−
(νs+νi)

2

2σ2

M∑
l=−M

M∑
m=−M

e−
(νs−l1ω)2

δω2

× e−
(νi−m1ω)2

δω2 , (18)

which has been expressed in terms of the frequency detunings
νµ = ωµ−ωµ0 (with µ = s, i). The JTA, ϒ̃(ts, ti), can now be
calculated analytically as the Fourier transform of ϒ(νs, νi).
It is convenient to express the JTI in terms of the time-sum
t+ = (ts + ti)/

√
2 and time-difference t− = (ts − ti)/

√
2
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variables, obtaining

S̃t(t−, t+) = exp

(
−

t2−
τ 2

c
−

t2+
τ 2

)

×

sin2
{(M + 1

2 )
1ω
√

2
[t− −

(
τc
τ

)2 t+]}

sin2
{
1ω

2
√

2
[t− −

(
τc
τ

)2 t+]}

×

sin2
{(M + 1

2 )
1ω
√

2
[t− +

(
τc
τ

)2 t+]}

sin2
{
1ω

2
√

2
[t− +

(
τc
τ

)2 t+]}
, (19)

In equation (19), τc =
√

2/δω is the temporal width
along the t− direction, or correlation time, which defines the
uncertainty in the time of emission difference. Note that this
parameter is proportional to

√
F (see equation (13)), so that

increasing the finesse leads to more signal and idler cavity
round trips and hence to a greater correlation time. Parameter
τ in equation (19), given by τ = τc

√
δω2 + σ 2/σ , represents

the temporal width along the t+ direction.

3. A specific source design

In this section we wish to present a specific design of a
SFWM photon pair cavity source to be used as the basis
for an atom–photon interface. Thus, we wish to match the
frequency and the emission bandwidth of one of the two
SFWM modes, say the signal mode, to an atomic transition.
In this example, we will consider as a specific example of
an atomic transition the D2 line in cesium which occurs at
852 nm with a bandwidth of 2π × 5.22 MHz.

Note that appropriate matching of one of the signal
SFWM modes to the atomic transition can be accomplished
through a Cs cavity, which is resonant only for the signal
mode. However, as will be studied in section 4, an important
advantage of the Csi cavity versus the Cs (or Ci) cavity, is
that it leads to a flux enhancement with respect to the flux
attainable in an equivalent source without a cavity. Thus, for
the example to be shown here, we will assume that both the
signal and idler modes are resonant in the cavity, in other
words we will assume that our source is based on a Csi cavity.

As a first step in the design of a suitable SFWM
cavity source, a particular fiber geometry must be determined
which fulfills phasematching with appropriate pump and idler
frequencies so that the signal frequency is precisely matched
to the atomic transition. Relying on the step-index model [37]
for the description of the dispersion in a PCF, we have found
that a PCF with core radius r = 0.68 µm and air-filling
fraction f = 0.5 exhibits phasematching for degenerate
pumps at λp = 1.064 µm, with SFWM wavelengths λs =

0.852 µm and λi = 1.417 µm. Note that the λs value is
matched to the atomic transition. Note also that if the PCF
geometry were to be taken into account fully, this would lead
to the need for a slight adjustment to the fiber specifications
for our choice of frequencies.

The detection of an idler photon at λi = 1.417 µm could
herald the presence of a single photon in the signal mode, at
λs = 0.852 µm, to interact with the D2 cesium transition.

However, note that unless a single cavity mode can be
isolated, the heralded photon will contain more than one
cavity mode. It is thus necessary to determine a minimum
required cavity mode spectral separation so that a single cavity
mode may be isolated with existing spectral filters. Using a
fiber of length L = 5 cm leads (see equation (12)) to a spectral
mode separation of1ω = 13.5 GHz, which is many times the
mode width δω and could therefore be isolated from the other
modes.

The next step in our source design is to determine
the required coefficient of finesse, so as to ensure that the
signal photon has a bandwidth which matches that of the
atomic transition. Setting the signal-photon bandwidth to
2π×5.22 MHz in angular frequency, equation (13) determines
the required coefficient of finesse: F = 6.2 × 104 (or a
corresponding reflectivity r2 = 0.992).

In figure 5(a) we show a plot of the resulting JSI for our
cavity source with the signal mode matched to the D2 line
of cesium, where we have assumed a pump bandwidth of
σ = 0.1 THz. In panels (b) and (c) we show the corresponding
single-photon spectra for the signal and idler modes. Note that
in section 4 we will describe a criterion for selecting the pump
bandwidth.

4. Photon pair rate of emission

In this section we focus on the emitted SFWM photon pair
flux for a χ (3) cavity. We define the flux N as the number of
photons, say in the signal mode, emitted from the cavity per
second. In the case of a pulsed pump, this corresponds to the
number of pairs emitted per pump pulse, multiplied by the
pump repetition rate R. Thus, for a Csi cavity we obtain the
following expression:

N = R
∑

k

〈9si
2 |â

†(k)â(k)|9si
2 〉. (20)

By substituting equations (4) and (5) into (20), and
following a similar treatment as in [36], which includes
writing sums over modes as integrals in the limit δk→ 0, it
can be shown that the emitted flux from a Csi cavity can be
expressed as

N =
25c2n2(ωo)L2γ 2p2

π3ω2
oσ

2R

×

∫
dωs

∫
dωi

ωsωik′(ωs)k′(ωi)

n2(ωs)n2(ωi)
As(ωs)Ai(ωi)

× |f (ωs, ωi)|
2, (21)

where p is the average pump power, k′(ω) = dk(ω)/dω,
Aµ(ωµ) is given by equation (9), and f (ωs, ωi) =

(π/2)1/2σF(ωs, ωi). Note that this expression for the emitted
flux is similar to that obtained for SFWM in the absence of a
cavity (see [36]), except for the modified photon pair spectral
distribution due to the cavity mode structure.

For the monochromatic pump regime, the SFWM emitted
flux is obtained by taking the limit σ → 0 of equation (21),

7
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Figure 5. (a) Here we show the joint spectral intensity, plotted as a
function of signal and idler frequency detunings, obtained for a
specific source design (see text), for which the signal photon has
been matched in frequency and bandwidth to the D2 line transition
of cesium. (b) Marginal joint spectral distribution for the signal
mode obtained by integrating the joint spectral intensity over the
idler frequency. (c) Marginal joint spectral distribution for the idler
mode obtained by integrating the joint spectral intensity over the
signal frequency.

from which we obtain

Ncw =
25c2n2(ωp)L2γ 2p2

πω2
p

×

∫
dω

ω(2ωp − ω)k′(ω)k′(2ωp − ω)

n2(ω)n2(2ωp − ω)

× As(ω)Ai(2ωp − ω)sinc2
[L1kcw/2], (22)

where ωp is the frequency of the monochromatic pump field
and the phase mismatch 1kcw is given by (see [36])

1kcw = 2k(ωp)− k(ω)− k(2ωp − ω)− 2γ p. (23)

We are interested in a comparison of the SFWM flux
obtained from a cavity source N, based on numerical
integration of equation (21), to that obtained from an

Figure 6. (a) Here we plot N/Nnc versus the pump bandwidth σI,
where N is the SFWM photon pair flux from a Csi cavity source and
Nnc is the flux of an equivalent source without a cavity. Panel (b) is
similar to (a), except that we have suppressed the idler-mode
resonance (i.e. we have assumed a Cs cavity).

equivalent source without a cavity, Nnc, also obtained from
equation (21) with Fs = Fi → 0. Note that our numerical
results below use the full two-photon state without any
approximations. For a numerical comparison, to be presented
below, we assume a very similar source configuration as in our
specific design presented in section 3. The main difference
is that while in the specific design we assumed r2 = 0.992
(or F = 6.2 × 104), here we have assumed r2 = 0.8 (or
F = 80). While this lower coefficient of finesse facilitates our
numerical calculations, qualitatively the behavior is identical.

In figure 6(a) we show plots of the quantity N/Nnc as a
function of the pump bandwidth σI, where σI =

√
2 ln(2)σ

is the intensity FWHM bandwidth of the pump, and while
maintaining the average pump power constant. We have
shown two curves, one corresponding to spectral filters of
widths 51ωs and 51ωi present on the paths of the signal
and idler photons, so that a total of 25 cavity modes are
present in the two-photon state (shown in green), and the

8



Laser Phys. 23 (2013) 015201 K Garay-Palmett et al

other corresponding to spectral filters 1ωs and 1ωi, so that
a single cavity mode is present (shown in red). It may
be appreciated that there is a distinct behavior for each of
the three zones: (i) σI >

√
21ω, (ii) δω < σI <

√
21ω,

and (iii) σI < δω. In the first of these zones, N/Nnc is
independent of σI with a value close to unity. In other words,
the flux produced by the cavity is essentially the same as that
produced by an equivalent source without a cavity. In the
second zone, however, N/Nnc rises as σ is reduced until it
reaches a maximum value within the third region. The blue
diamond shown in figure 6 indicates the flux calculated in
the monochromatic pump limit, through numerical integration
of equation (22). This behavior implies that for σI <

√
21ω′

there is an enhancement in the flux obtained from the cavity,
where the optimum enhancement occurs for small pump
bandwidths values, within the region σI < δω. Note that while
the two curves drawn are qualitatively similar to each other, so
that the flux enhancement effect occurs in both of these cases,
because an atom–photon interface relies on single cavity mode
we are more interested in the flux enhancement obtained for a
single mode.

Figure 6(b) is similar to figure 6(a), computed for a Cs
cavity instead of a Csi cavity. It is interesting to note that
in this case N/Nnc is close to unity throughout the pump
bandwidth range considered. In other words, there is no flux
enhancement observed for a SFWM cavity source which is
resonant for only one of the two SFWM modes. Thus, in order
to observe a flux enhancement, the cavity needs to be resonant
for both SFWM photons.

4.1. Flux expressions obtained from a simple geometrical
model

The expression which we have derived for the SFWM
flux (see equation (21)) is in terms of a two-dimensional
integral. While flux values may be obtained through numerical
integration of equation (21), as was done for figure 6, we may
gain additional physical insight from a crude approximation
of the flux as N = AH, where A is the area in {ωs, ωi} space
in which the joint spectrum has an appreciable magnitude,
and H is the maximum value of the joint intensity, within
this area. For our present analysis we are interested in the
SFWM flux obtained in a χ (3) cavity, N, normalized by the
corresponding flux in an equivalent source without a cavity,
likewise expressed as Nnc = AncHnc. The quantity ξ may then
be approximated as ξ ≈ ad, where a≡ H/Hnc and d ≡ A/Anc.

Because the flux enhancement effect occurs for a single
cavity mode in a manner qualitatively similar to that for
multiple cavity modes (see figure 6), it is sufficient to analyze
the former case in order to obtain an understanding of the
relevant physics. Thus, in what follows we study the behavior
of ξ as a function of the pump bandwidth, assuming that the
signal and idler photons are filtered using rectangular spectral
filters of widths 1ωs and 1ωi, respectively, so that a single
cavity mode is retained. Note that while for non-degenerate
SFWM the intra-mode spacing 1ω and the mode width δω
differ between the two SFWM modes (for the specific design
in section 3 this variation is near 5%), for the present analysis

we will assume that 1ωs = 1ωi and δωs = δωi. We are
interested in the three zones (i) σI >

√
21ω, (ii) δω < σI <√

21ω, and (iii) σI < δω considered before.
Let us first analyze in this manner a Csi cavity. In this

case, it can be shown that parameter a is given by

a =

(
1+ |r2|

1− |r2|

)2

. (24)

In figure 7(a) we show schematically the cavity mode
structure. Each circle corresponds to a cavity mode of width
δω, separated from each neighboring mode, along the signal
and/or idler frequency axes, by 1ω. The spectral filters of
width 1ω correspond to retaining only the flux produced
within one of the squares in the grid shown. The area shaded
in red corresponds to the flux emitted with a cavity source,
while the (square) area shaded in blue corresponds to the flux
emitted with an equivalent source without a cavity.

In region 1, A is the area of a disk of diameter δω, i.e. A =
πδω2/4, while Anc is the area of a square of dimension 1ω,
i.e. Anc = 1ω

2, so that

ξ1 = a
πδω2

41ω2 =
(1+ |r2|)

2

4π |r2|
, (25)

which is independent of σI. In region 2, A = πδω2/4, while
Anc = σI(

√
21ω − σI/2), so that

ξ2 =
aπδω2

4σI(
√

21ω − σI/2)
. (26)

In region 3, we approximate A as A ≈ δωσI, an
approximation which becomes better for smaller σI, while
Anc = σI(

√
21ω − σI/2), so that

ξ3 =
aδω

√
21ω − σI/2

. (27)

Note that the last two expressions for ξ (equations (26)
and (27)) depend on σI and yield the flux enhancement
described below. This leads to an expression for the flux
enhancement, E, defined as the quotient ξ1/ξ3, with σI → 0.
We thus obtain

E =
√

2F , (28)

making it clear that the flux enhancement increases with the
coefficient of finesse.

Let us now turn our attention to a cavity source which is
resonant only for one of the SFMW modes, i.e. a Cs or Ci
cavity. In this case the parameter a is given by

a =
1+ |r2|

1− |r2|
. (29)

As can be seen in figure 7(b), which is similar to
figure 7(a) drawn for the Cs cavity, in all three of the regions
considered above, A is the area of a parallelogram with height
δω and base

√
2σ , while Anc is also the area of a parallelogram

with height 1ω and base
√

2σ . Thus, the ratio between the
flux emitted from the cavity and the flux emitted from SFWM

9
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Figure 7. (a) Here we show schematically the mode structure for a
Csi cavity in {ωs, ωi} space. Each circle, with diameter δω,
represents a spectral cavity mode. The square grid shown has a
spacing given by the mode separation 1ω, while the diagonal band,
with width σI indicates the pump spectral amplitude. (b) This panel
shows a similar schematic, for a Cs cavity. The cavity modes are
now elongated, with a width δω for the signal mode.

without a cavity is the same in the three regions and is given
by

ξ =
aδω

1ω
. (30)

This result indicates that in a Cs cavity there is no an
enhancement in the emitted flux due to the cavity, as was
the case for a Csi cavity. This behavior can be appreciated
in figure 6.

4.2. Analysis of the absolute efficiency

In our discussion of the SFWM flux, we have so far focused
on the flux attainable in a SFWM cavity source relative to

Figure 8. Here we show the absolute flux emitted by a Csi cavity
characterized by reflectivities |r2| = 0.8, 0.9, 0.99, with other source
parameters selected as for figure 6, as a function of the pump
bandwidth σI. Also shown is the absolute flux as a function of σI for
an equivalent source without a cavity. We have indicated with
vertical dashed lines the δω values obtained for each of these three
cases, and we have also indicated the

√
21ω value.

an equivalent source without a cavity. It is likewise important
to study the flux in absolute terms, which our analysis in
section 4 and in particular equation (21) permits.

While much of the behavior of the relative flux discussed
so far is qualitatively identical to the behavior expected for
a SPDC χ (2) cavity source, the absolute flux leads to some
considerably different behaviors between the χ (2) and χ (3)

cases. This difference is related to the fact that, for SFWM,
two pump photons are annihilated in each generation event
rather than just one for SPDC. This implies that, within the
phasematching bandwidth σPM (i.e. for σI . σPM), the SFWM
flux scales linearly with the pump bandwidth σI while the
SPDC flux remains constant with respect to σI for σI .
σPM. In physical terms, each pump frequency of one pump
photon may participate in the SFWM process together with
all pump frequencies of the other pump photon, limited by
phasematching, so that increasing the pump bandwidth leads
to a greater range of phasematched frequency combinations,
and hence to a greater flux. In contrast, in the case of SPDC,
each pump frequency may be considered to act independently
from other frequencies leading to a constant flux versus σ
dependence, for a constant average pump power.

In figure 8(a) we present the absolute SFWM flux,
assuming a Csi cavity, plotted as a function of the pump
bandwidth σI, for a number of different values of the
reflectivity |r2|, in particular for |r2| = 0.8, |r2| = 0.9 and
|r2| = 0.99, with other source parameters selected to be
identical to those assumed for figure 6. In this figure we have
also indicated the cavity mode width δω value for each of
these reflectivities and the

√
21ω value. Note that the effect

of the cavity is that the flux versus σI dependence is linear for
σI . δω, climbs more slowly for σI &

√
2δω, and thereafter

10
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reaches a plateau at a value of σI, which for large F is
close to δω. Thus, while the maximum cavity-induced flux
enhancement occurs for σI → 0, as is clear from figure 6, the
maximum absolute flux occurs within the above mentioned
plateau. For a large F , the flux can be maximized if the pump
bandwidth satisfies σI & δω. Note that in the case of Cs cavity,
the absolute flux versus σI curves (not shown) yield essentially
the same curve as the case without cavity shown in figure 8(a).

As a particular example, let us calculate the absolute
flux for the specific source design of section 3. This source
involves degenerate pumps at λp = 1.064 µm, with SFWM
wavelengths λs = 0.852 µm and λi = 1.417 µm. We assume
that the cavity source is based on a photonic crystal fiber of
length L = 1 cm, with a core radius of r = 0.68 µm and
air-filling fraction of f = 0.5. We assume a reflectivity of
|r2| = 0.998, which corresponds to a coefficient of finesse
of F = 9.98 × 105, and a cavity mode width of δω =
2π × 5.22 MHz, which defines resulting SFWM emission
bandwidth and is matched to the D2 line transition of cesium.
We assume an average pump power of 300 mW, with a pump
bandwidth σI selected to have a value σI = 5δω = 0.164 GHz
which fulfils the condition σI & δω of the previous paragraph.
This value of σI corresponds to a pulse duration of 16.9 ns,
and we assume a repetition rate of 0.1 MHz. The resulting
photon pair flux can then determined by numerical integration
of equation (21): 1.03× 109 photon pairs s−1.

5. Conclusions

In this paper we have studied the generation of photon pairs
through the process of spontaneous four wave mixing in χ (3)

cavities. We have presented expressions for the two-photon
state, showing that in the spectral domain the joint amplitude
is given by the product of the corresponding joint amplitude
in the absence of a cavity and a matrix of signal and idler
modes defined by the cavity. The width of each cavity mode
δω is proportional to 1/

√
F , where F is the coefficient

of finesse. Thus, the emission bandwidth can be effectively
controlled by the quality of the cavity, which leads to the
possibility of matching the frequency and bandwidth of one
of the SFWM photons to a particular atomic transition, for the
implementation of photon–atom interfaces.

We have also presented an analysis of the two-photon
state in the temporal domain. In particular, we have shown
that the spectral cavity modes translate into a corresponding
matrix of modes in the temporal domain. The envelope which
describes the amplitude of these modes has a non-factorable
shape in the space formed by the times of emission. This
results in quantum entanglement in the temporal-mode degree
of freedom with a dimensionality which scales with the
effective number of cavity round trips made by the SFWM
photons, as governed by the cavity finesse. Also, we show that
by approximating the cavity spectral modes through Gaussian
functions it becomes possible to express the joint temporal
intensity in closed analytic form.

We have presented expressions for the absolute source
brightness, given in terms of a two-dimensional frequency
integral. We have evaluated this integral numerically to yield

on the one hand a comparison of the flux obtained in the
cavity with the flux obtained in an equivalent source without
a cavity. Through this analysis we have shown that the use
of a pump bandwidth which is smaller than the inter-mode
spacing results in a flux enhancement with respect to an
equivalent source without a cavity. We have presented a
simple geometrical model which clarifies the physics behind
the flux enhancement, and leads to an expression for the
flux enhancement in terms of the coefficient of finesse. Our
analysis on the other hand shows that while the optimum
source enhancement occurs for a small pump bandwidth σI→

0, the absolute source brightness reaches its optimum value, in
the case of a large coefficient of finesse, for σI & δω, where
δω is the cavity mode width. We hope that this work will be
useful for the implementation of SFWM cavity sources, which
could form a crucial component for atom–photon interfaces.
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